Functionalized α-Trimethylsilyl Allenones

Robert F. Cunico,* Leonard F. Zaporowski, and Mark Rogers

Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115

Received August 9, 1999

Functionalized allenes have proven to be useful intermediates in organic synthesis,¹ and the utility of both allenylsilanes² and allenyl ketones³ have recently been demonstrated. Pursuant to our interest in the approach to α -trimethylsilyl allenones shown in eq 1,⁴ we have explored possible extensions within the substitution pattern of R¹ and R² with a view toward introducing additional functionality to these species. Table 1 summarizes our results.

$$R^{2} \xrightarrow{R^{1}}_{X} \xrightarrow{\text{OTMS}}_{\text{TMS}} \xrightarrow{\text{TMSOTf}}_{\text{or Me}_{2}\text{AlCl}} \xrightarrow{R^{1}}_{R^{2}} \xrightarrow{\text{OTMS}} (1)$$

The use of this methodology to prepare cycloalkylidene allenones had not yet been explored, and the cyclopropylidene case was chosen as the most stringent example due to its inherent strain. This facet was reflected in the reactivity of its acetylenic precursors. Thus, 1 afforded only tarry materials when treated with trimethylsilyl trifluoromethanesulfonate (TMSOTf) under conditions that had quickly afforded good yields of allenone when $R^1 = R^2 = Me.^{4a}$ The methanesulfonate **2**, while exhibiting unusual stability compared to a previous instance,^{4a} did, however, give the allenone 10 in excellent yield upon treatment with Me₂AlCl.

Acetylenic precursors containing groups that would lead to additionally functionalized α -trimethylsilyl allenones were then explored. Both the acetals 3 and 4 smoothly afforded the same allenyl ether 11, while trimethylsilylation of ketone 5 gave the allenyl ether 12. This last result indicated that leaving groups per se are not necessary at the propargylic terminus, and rearrangement can be initiated by generating electrophilic character at this site by other means. It was therefore anticipated that attack at the π -bond of **6** by electrophilic agents would provide the impetus for rearrangement to

Table 1. Preparation of α-Trimethylsilyl Allenones

	-	• •	
Acetylene	Reagent	Allene	Yield (%)
OTMS R =			
	TMSOTf		
D ^{OMs} 2 − R	Me ₂ AICI		93
TMSO EtO 3	TMSOTf		90
EtO EtO 4	TMSOTf	11	67
0 <u>−</u> R 5	TMSOTf		69
}_ В	NBS		65
	TMSOTf		67
EtO 8	a		
Me ₂ N 9	a		

^a See text.

occur, and simple bromination was chosen as an example. In the event, addition of Br₂ led to complex mixtures, but the use of N-bromosuccinimide in N-methyl-2-pyrrolidinone proved effective for the formation of 13. The epoxide 7 was next targeted for examination, but attempts to derive it from 6 by *m*-chloroperbenzoic acid oxidation led to multicomponent mixtures, possibly due to the acidic nature of the reagent. The use of dimethyldioxirane was then found to be superior for this purpose. Subsequent treatment of the epoxide with TMSOTf led directly to the alcohol 14, presumably the result of an in situ desilylation. All attempts to convert the ester 8 (TMSOTf, MeOTf, Et₃OBF₄, TiCl₄) or the amide 9 (TMSOTf, MeOTf) to the respective allenones were unsuccessful. Nevertheless, the preceding results show that a number of multifunctional allenones, compounds that should exhibit a rich subsequent chemistry, are readily accessible by this methodology.

Experimental Section

General Methods. THF and diethyl ether were distilled from benzophenone ketyl immediately before use. All reactions were carried out under anhydrous conditions and positive Ar pressure. Activated MnO₂ was prepared by a literature procedure.⁵ NBS was dried over P₂O₅. Unless otherwise indicated, workup prior to distillation or chromatography consisted of pouring the reaction mixture into saturated NaHCO₃, extracting with pentane, drying the organic phase by passage through anhydrous

⁽¹⁾ Reviews: (a) *The Chemistry of Ketenes, Allenes and Related Compounds*; Patai, S., Ed.; Wiley: New York, 1980. (b) *The Chemistry of the Allenes*; Landor, S. R., Ed.; Academic Press: London, 1982. (c) Smadja, W. Chem. Rev. 1983, 83, 263. (d) Allenes in Organic Synthesis, Schuster, H. F., Coppola, G. M., Eds.; Wiley: New York, 1984. (e) Pasto, D. J. Tetrahedron 1984, 40, 2805. (f) Braverman, S. Rearrangements Involving Allenes. In *The Chemistry of Double-Bonded Functional Groups*, Patai, S., Ed.; Wiley: New York, 1989; Suppl. A, Vol. 2, Part

 ^{(2) (}a) Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. **1989**, 111, 4407. (b) Jin, J.; Smith, D. T.; Weinreb, S. M. J. Org. Chem. **1995**, 60, 5366. (c) Shepard, M. S.; Carriera, E. M. J. Am. Chem. Soc. **1997**, 119, 2597.
(3) (a) Marshall, J. A.; Robinson, E. D. J. Org. Chem. **1990**, 55, 3450.
(b) Hashmi, A. S. K.; Choi, J.-H.; Bats, J. W. J. Prakt. Chem. **1999**, 341, 342. (c) Hashmi, A. S. K.; Bats, J. W.; Choi, J.-H.; Schwartz, L. Tatanbadara Lett. **1009**, 20, 7401

^{(4) (}a) Cunico, R. F. Tetrahedron Lett. 1994, 35, 2291. (b) Cunico, R. F.; Nair, S. K. Synth. Commun. 1996, 26, 803. (c) Cunico, R. F.; Nair, S. K. Tetrahedron Lett. 1997, 38, 25.

⁽⁵⁾ Goldman, I. M. J. Org. Chem. 1969, 34, 1979.

 $MgSO_4,$ and concentration by rotary evaporation. 1H NMR (200 MHz) and ^{13}C NMR (50.3 MHz) spectra were obtained in $CDCl_3$ unless otherwise indicated. Distillation data refer to Kugelrohr oven temperatures.

1-[1-[(Trimethylsilyl)oxy]cyclopropyl]-3-trimethylsilyl-3-[(trimethylsilyl)oxy]-1-butyne (1). This was prepared by the silylation of the corresponding alcohol, 1-[3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butynyl]cyclopropanol, which was made by a modification of the method of Salaün.⁶

Cyclopropanone ethyl hemiacetal⁷ (0.58 g, 5.6 mmol) in 10 mL of THF at 0 °C was treated with 2.8 mL of EtMgBr (2 M in Et₂O, 5.6 mmol), allowed to warm to 25 °C, and stirred for 2 h. A second flask containing 3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butyne (1.21 g, 5.6 mmol) and 10 mL of THF at 0 °C was treated with 3.0 mL of EtMgBr (2 M in Et₂O, 6.0 mmol) and then stirred for 2 h at 25 °C. Both solutions were then recooled to 0 °C, and the hemiacetal solution was cannulated into the other flask. After 45 h at 25 °C, workup and distillation (50 °C, 0.05 mmHg) gave a colorless liquid that NMR analysis indicated contained some starting acetylene. Evacuation for 45 min under high vacuum removed this impurity and afforded 0.94 g (62%) of the title alcohol. ¹H NMR: δ 0.05 (s, 9H), 0.16 (s, 9H), 0.95 (m, 2H), 1.08 (m, 2H), 1.39 (s, 3H), 2.22 (br s, 1H). $^{13}\mathrm{C}$ NMR: δ -4.2, 2.5, 17.6, 26.2, 46.3, 62.4, 87.1, 84.3. IR: 3400 (br), 2200 (vw) 1250, 1070 cm⁻¹. Anal. Calcd for $C_{13}H_{26}O_2Si_2$: C, 57.72; H, 9.69. Found: C, 57.66; H, 9.70. A mixture of this alcohol (0.87 g, 3.2 mmol), 4 mL CH₂Cl₂, and 0.47 mL (0.45 g, 3.2 mmol) of TMS-imidizole was stirred for 4.5 h. Workup and distillation (90 °C, 0.05 mmHg) gave 0.88 g (80%) of 1. ¹H NMR: δ 0.04 (s, 9H), 0.15 (s, 9H), 0.21 (s, 9H), 0.92 (m, 2H), 0.99 (m, 2H), 1.40 (s, 3H). ¹³C NMR: δ -4.1, 1.3, 2.5, 17.7, 18.0, 26.1, 46.8, 62.4, 85.8, 90.1. Anal. Calcd for C₁₆H₃₄O₂Si₃: C, 56.07; H, 10.00. Found: C, 55.90; H, 10.11.

1-[1-[(Methanesulfonyl)oxy]cyclopropyl)]-3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butyne (2). A mixture of 1-[3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butynyl]cyclopropanol (0.95 g, 3.5 mmol), 12 mL of CH₂Cl₂, and 0.50 mL (0.35 g, 3.6 mmol) of triethylamine was cooled to -78 °C, and treated with methanesulfonyl chloride (0.27 mL, 0.40 g, 3.5 mmol). After the mixture was stirred for 3 h at 25 °C, workup and chromatography on silica gel (3% EtOAc-hexane) gave 0.78 g (64%) of **2**. ¹H NMR: δ 0.06 (s, 9H), 0.16 (s, 9H), 1.2 (m, 2H), 1.43 (s, 3H), 1.6 (m, 2H), 3.17 (s, 3H). ¹³C NMR: δ –4.3, 2.3, 16.8, 17.0, 25.8, 40.0, 54.5, 62.3, 85.0, 91.0. IR: 2215, 1366 cm⁻¹. Anal. Calcd for C₁₄H₂₈O₄SSi₂: C, 48.23; H, 8.09. Found: C, 48.28; H, 8.31.

1-Ethoxy-4-(trimethylsilyl)-1,4-bis[(trimethylsilyl)oxy]-2-pentyne (3). Butyllithium (2.5 M, 0.56 mL) was added to 0.30 g (1.4 mmol) of 3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butyne in 8 mL of THF at -78 °C. After 0.5 h, ethyl formate (0.21 g, 2.8 mmol) was added, and the mixture was stirred for 1 h. TMS-imidazole (0.25 mL, 0.24 g, 1.7 mmol) was then added and the mixture allowed to warm to 0 °C (2.5 h). Following workup, distillation (90 °C, 0.05 mmHg) gave 0.32 g (63%) of **3**. ¹H NMR: δ 0.04 (s, 9H), 0.13 (s, 9H), 0.16 (s, 9H), 1.19 (t, 3H), 1.39 (s, 3H), 3.61 (m, 2H), 5.52 (s, 1H). ¹³C NMR (C₆D₆): δ –4.4, 0.4, 2.3, 15.4, 26.0, 60.1, 62.4, 86.0, 87.4, 88.1. IR: 2170, 1251 cm⁻¹. Anal. Calcd for C₁₆H₃₆O₃Si₃: C, 53.28; H, 10.06. Found: C, 53.28; H, 10.10.

1,1-Diethoxy-4-(trimethylsilyl)-4-[(trimethylsilyl)oxy]-2-pentyne (4). Propiolaldehyde diethyl acetal (0.54 g, 4.2 mmol) in 15 mL of ether at -78 °C was treated with butyllithium (1.6 mL, 2.5 M, 4.0 mmol). After 15 min, acetyltrimethylsilane (0.46 g, 4.0 mmol) was added and, sequentially, 10 min later, TMS-imidazole (0.56 g, 4.0 mmol) and TMSOTf (0.44 g, 2.0 mmol). After 1 h at -78 °C, the mixture was slowly warmed over 45 min to 0 °C and poured into aqueous NaHCO₃. Distillation (95° C, 0.1 mmHg) afforded 0.80 g (63%) of **4**. ¹H NMR: δ 0.04 (s, 9H), 0.13 (s, 9H), 1.19 (t, 6H), 1.40 (s, 3H), 3.58 (m, 2H), 3.67 (m, 2H), 5.29 (s, 1H). ¹³C NMR (1:3 v/v C₆D₆ $-CCI_4$): δ -4.1, 2.5, 15.5, 26.1, 60.6, 62.3, 83.8, 89.0, 91.8. IR: 1250, 1180 cm⁻¹. Anal. Calcd for C₁₅H₃₂O₃Si₂: C, 56.91; H, 10.19. Found: C, 56.76; H, 10.01.

6-Trimethylsilyl-6-[(trimethylsilyl)oxy]-4-heptyn-3one (5). This was prepared by the oxidation of 6-trimethylsilyl-6-[(trimethylsilyl)oxy]-4-heptyn-3-ol. Butylithium (2.5 M, 0.56 mL, 1.4 mmol) was added to a solution of 3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butyne (0.30 g, 1.4 mmol) in 6 mL of THF at -78 °C. After 45 min, propionaldehyde (0.10 mL, 0.08 g, 1.4 mmol) was added and the mixture stirred at temperature for 1.5 h, followed by 0.5 h at 0 °C. The reaction was quenched with aqueous NH₄Cl (15% w/v). Distillation (80 °C, 0.2 mmHg) gave 0.28 g (71%) of the alcohol. ¹H NMR: δ 0.04 (s, 9H), 0.14 (s, 9H), 0.98 (t, 3H), 1.38 (s, 3H), 1.6 (s, 1H), 1.72 (m, 2H), 4.35 (t, 1H). Anal. Calcd for C13H28O2Si2: C, 57.29; H, 10.36. Found: C, 57.52; H, 10.46. This alcohol (0.46 g, 1.7 mmol), CCl₄ (10 mL), and activated MnO₂ (5 g, 60 mmol) were stirred vigorously for 13 h. After glass frit filtration, distillation (80 °C, 0.7 mmHg) gave 0.37 g (81%) of 5. ¹H NMR: δ 0.08 (s, 9H), 0.17 (s, 9H), 1.12 (t, 3H), 1.46 (s, 3H), 2.55 (q, 2H). $^{13}\mathrm{C}$ NMR (1:3 v/v C_6D_6-CCl₄): δ -4.2, 2.3, 8.2, 25.5, 38.5, 62.4, 88.3, 96.1, 185.4. IR: 2180, 1670 cm⁻¹. Anal. Calcd for C₁₃H₂₆O₂Si₂: C, 57.72; H, 9.69. Found: C, 57.95; H, 9.85

2-Methyl-5-(trimethylsilyl)-5-[(trimethylsilyl)oxy]-3-hexyn-1-ene (6). n-BuLi (2.5 M, 22.0 mL, 55 mmol) was added to a solution of 3.6 g (55 mmol) of 3-methyl-3-buten-1-yne in 20 mL of ether at -78 °C, followed 25 min later by 7.0 g (60 mmol) of acetyltrimethylsilane. After 1 h, the mixture was allowed to warm and poured into NH₄Cl solution. Distillation (short path) gave 7.1 g (71%) of 5-methyl-2-(trimethylsilyl)-5-hexen-3-yn-2-ol, bp 80 °C (0.4 mmHg). $^1\mathrm{H}$ NMR: δ 0.12 (s, 9H), 1.45 (s, 3H), 1.86 (s, 3H), 5.15 (s, 1H), 5.20 (s, 1H). ¹³C NMR: δ -4.5, 23.6, 25.4, 61.2, 87.6, 92.3, 120.8, 126.8. IR: 3420 (br), 1251, 1048 cm⁻¹. The alcohol (6.0 g, 30 mmol), TMS-imidazole (4.6 g, 30 mmol), and CH₂Cl₂ (25 mL) were stirred for 10 h. Workup gave 6.1 g (72%) of **6**, bp 75 °C (0.1 mmHg). ¹H NMR: δ 0.04 (s, 9H), 0.14 (s, 9H), 1.39 (s, 3H), 1.86 (s, 3H), 5.14 (m, 2H). ¹³C NMR: δ-4.5, 2.0, 23.4, 25.9, 62.5, 88.9, 93.0, 120.0, 127.1. IR: 2210, 1620 cm⁻¹. Anal. Calcd for C₁₃H₂₆OSi₂: C, 61.35; H, 10.29. Found: C, 61.34; H, 10.35.

1,2-Epoxy-2-methyl-5-(trimethylsilyl)-5-[(trimethylsilyl)-oxy]-3-hexyne (7). An acetone solution of dimethyldioxirane⁸ (0.07 M, 35 mL, 2.4 mmol) was added at once to 0.30 g (1.2 mmol) of **6** and the mixture stirred 10 min. The solvent was removed and the residue distilled to give 0.23 g (72%) of **7**, bp 90 °C (1 mmHg). ¹H NMR: δ 0.03 (s, 9H), 0.13 (s, 9H), 1.36 (s, 3H), 1.52 (s, 3H), 2.73 (d, 1H, J = 6 Hz)), 2.93 (d, 1H, J = 6 Hz). ¹³C NMR (C₆D₆): δ –4.4, 2.4, 23.2, 26.1, 47.1, 54.9, 62.6, 86.4, 87.9 IR: 1937, 1249 cm⁻¹. Anal. Calcd for C₁₃H₂₆O₂Si₂: C, 57.72; H, 9.69. Found: C, 57.65; H, 9.65.

Ethyl 4-(Trimethylsilyl)-4-[(trimethylsilyl)oxy]-2-pentynoate (8). Butyllithium (2.5 M, 0.28 mL, 0.70 mmol) was added to a solution of 3-(trimethylsilyl)-3-[(trimethylsilyl)oxy]-1-butyne (0.15 g, 0.70 mmol) in THF (8 mL) at -78 °C. After 30 min, ethyl chloroformate (70 μ L, 0.080 g, 0.73 mmol) was added, and the mixture was allowed to slowly warm to 25 °C (2 h). Aqueous NH₄Cl (15% w/v) was then added. Distillation (70 °C, 1.4 mmHg) gave 0.14 g (72%) of 8. ¹H NMR: δ 0.08 (s, 9H), 0.16 (s, 9H), 1.30 (t, 3H), 1.45 (s, 3H), 4.21 (q, 2H). ¹³C NMR: δ –4.6, 1.8, 14.0, 25.0, 61.5, 62.1, 80.3, 92.8, 153.8. IR: 2220, 1710 cm⁻¹. Anal. Calcd for C₁₃H₂₆O₃Si₂: C, 54.52; H, 9.11. Found: C, 54.49; H, 9.32.

N,N-Dimethyl-4-(trimethylsilyl)-4-[(trimethylsilyl)oxy]-2-pentynamide (9). Following the procedure employed for 8, but using dimethylcarbamyl chloride, an 81% yield of 9 was obtained as a yellow solid (mp 42–45 °C) after distillation (80 °C, 0.6 mmHg). ¹H NMR: δ 0.08 (s, 9H), 0.16 (s, 9H), 1.47 (s, 3H), 2.95 (s, 3H), 3.14 (s, 3H). ¹³C NMR: δ –4.6, 1.9, 25.2, 33.9, 38.0, 62.2, 80.6, 96.3, 154.5. IR: 2210, 1635 cm⁻¹. Anal. Calcd for C₁₃H₂₇NO₂Si₂: C, 54.68; H, 9.83; N, 4.91. Found: C, 54.56; H, 9.53; N, 4.83.

5,5-Dimethylene-3-(trimethylsilyl)-3,4-pentadien-2one (10). A mixture of 0.28 g (0.80 mmol) of **2** and 2 mL of CH₂-Cl₂ at -78 °C was treated with 2.0 mL (2.0 mmol) of 1.0 M Me₂AlCl in hexane (lower molar ratios of catalyst to substrate led to incomplete conversion) and allowed to slowly warm to 25

⁽⁶⁾ Salaün, J.; Marguerite, J. *Organic Syntheses*; Wiley: New York, 1990; Collect. Vol. VII, p 131.

⁽⁷⁾ Salaün, J. J. Org. Chem. **1976**, 41, 1237.

⁽⁸⁾ Murray, R. W.; Jeyaraman, R. *J. Org. Chem.* **1985**, *50*, 2847. See also: Adam, W.; Bialas, J.; Hadjiarapoglou, L. *Chem. Ber.* **1991**, *124*, 2377.

°C. After workup, distillation (85 °C, 0.08 mmHg) gave 0.14 g (93%) of **10**. ¹H NMR: δ 0.14 (s, 9H), 1.87 (m, 4H), 2.26 (s, 3H). ¹³C NMR: δ –0.8, 11.9, 28.4, 71.9, 106.1, 201.5, 202.5. IR: 1995, 1645. Anal. Calcd for C₁₀H₁₆OSi: C, 66.60; H, 8.94. Found: 66.42; H, 9.16.

5-Ethoxy-3-(trimethylsilyl)-3,4-pentadiene-2-one (11). Preparation from 3. A mixture of **3** (0.045 g, 0.12 mmol) and dry CH_2Cl_2 was treated at -78 °C with TMSOTf (2.5 μ L) and then stirred for 10 min. Aqueous NaHCO₃ (1 M, 4 mL) was then added dropwise at -78 °C. The cooling bath was removed and the mixture allowed to warm to 25 °C. After workup, distillation (80 °C, 0.9 mmHg) gave 0.069 g (90%) of **11. Preparation from 4.** A solution of **4** (0.080 g, 0.24 mmol) in 5 mL of dry CH₂Cl₂ at -78 °C was treated with 2.5 μ L of TMSOTf. Within 1 min, the reaction mixture was poured into NaHCO₃ solution (10 mL, 1 M). Workup as before gave 0.032 g (67%) of **11.** ¹H NMR: δ 0.13 (s, 9H), 1.29 (t, 3H), 2.27 (s, 3H), 3.57 (q, 2H), 6.95 (s, 1H). ¹³C NMR (C₆D₆): δ -1.0, 15.0, 27.2, 65.4, 121.8 (2 coincident C), 199.3, 214.2. IR: 1930, 1670 cm⁻¹. Anal. Calcd for C₁₀H₁₈O₂Si: C, 60.56; H, 9.15. Found: C, 60.58; H, 9.40.

3-(Trimethylsilyl)-5-[(trimethylsilyl)oxy]-3,4-heptadien-2-one (12). Scrupulously dry conditions must be employed. A solution of **5** (0.11 g, 0.39 mmol) in CH₂Cl₂ (1 mL, Aldrich Chemical Co., 0.005% H₂O) was treated at -78 °C with 7 μ L (0.04 mmol) of TMSOTf and stirred for 15 min. Triethylamine (54 μ L, 0.39 mmol) was then added and the mixture held at temperature for 5 min. After slow warming to 25 °C (2h), aqueous NaHCO₃ (1 M) was added. Distillation (80 °C, 0.5 mmHg) gave 0.07 g (69%) of **12**. ¹H NMR: δ 0.13 (s, 9H), 0.16 (s, 9H), 0.98 (t, 3H), 2.22 (m, 2H), 2.22 (s, 3H). ¹³C NMR: δ –1.1, 0.3, 10.7, 27.0, 27.4, 117.6, 128.8, 200.8, 216.2. IR: 1930, 1670 cm⁻¹. Anal. Calcd for C₁₃H₂₆O₂Si₂: C, 57.72; H, 9.69. Found: C, 57.97;H, 9.77.

6-Bromo-5-methyl-3-(trimethylsilyl)-3,4-hexadien-2one (13). A solution of *N*-bromosuccinimide (0.22 g, 1.2 mmol) in *N*-methyl-2-pyrrolidinone (1 mL) was added dropwise by syringe to a mixture of **6** (0.30 g, 1.2 mmol) and *N*-methyl-2prrolidinone (3 mL) at 0 °C. After 2 h at 0 °C, the NaHCO₃ solution was added, and the mixture was extracted with pentane, washed $3\times$ with water, and dried. Distillation gave 0.20 g (65%) of **13**, bp 110 °C (2 mmHg). ¹H NMR: δ 0.14 (s, 9H), 1.91 (s, 3H), 2.25 (s, 3H), 4.06 (m, 2H). ¹³C NMR: δ -1.1, 16.0, 28.7, 35.1, 95.0, 105.1, 200.4, 214.4. IR: 1936, 1665 cm⁻¹. Anal. Calcd for C₁₀H₁₇BrOSi: C, 45.97; H, 6.56. Found (best result): C, 46.97; H, 6.90.

6-Hydroxy-5-methyl-3-(trimethylsilyl)-3,4-hexadien-2one (14). A solution of **7** (0.15 g, 0.55 mmol) in 5 mL of CH_2Cl_2 at -78 °C was treated with 5 μ L of TMSOTF. After 1 min, the reaction was quenched with 1 M NaHCO₃. After workup, distillation (100 °C, 1 mmHg) gave 0.074 g (67%) of **14**. ¹H NMR: δ 0.12 (s, 9H), 1.45 (br s, 1H), 1.83 (s, 3H), 2.22 (s, 3H), 4.16 (d, 2H). ¹³C NMR: δ -1.1, 14.4, 28.1, 63.7, 97.6, 105.7, 201.6, 213.3. IR: 3400 (br), 1940, 1655 cm⁻¹. Anal. Calcd for C₁₀H₁₈O₂Si: C, 60.56; H, 9.15. Found: C, 60.30; H, 9.19.

JO9912552